INTERESTING FACTS ABOUT HOW DOGS "SEE/SENSE" THE WORLD SEE, HEAR, SMELL, FEEL...

Dr. Anna Gergely

Research fellow, HUN-REN Research Centre for Natural Sciences,

WHAT IS PERCEPTION?

Detecting, processing and transform external (environmental) stimuli into meaningful messages using sensory organs and the nervous system

stimulus \rightarrow message \rightarrow representation \rightarrow behavior

WHY IS IT IMPORTANT?

Understanding the perceptual world of dogs improves our understanding of their behavior

 There is a weird object on the ground, the dog is scared of it 2. There is a heating bitch nearby, the dog is processing smell 3. The dog hears a growl nearby and gets frustrated

EVOLUTIONARY APPROACH

Perception tightly coupled to the survival of the species in its environment (niche).

DOGS ARE SPECIAL!

Huge morphological differences between breeds!

Different perceptual abilities within the species!

McGreevy et al. 2004, Gazzano et al. 2008

Huge differences in the environment during development!

TYPES OF SENSES

OLFACTION, HEARING, VISION, TASTING, TOUCHING

- 1. Olfactory system (most odour molecules: main olfactory epithelium/ORC→ olfactory nerves→ olfactory cortex)
- 2. Vomeronasal (Jacobson) organ (non-volatile molecules-feromones: between nasal-oral cavity→ accessory olfactory bulb
 → hypothalamus (*flehmen response*)
- 3. Trigeminal nerve (innervating the face)

this property basis place in the arryightak

Kokocińska-Kusiak et al. 2021, Miklósi 2007

Olfactory capability ~ number of OR genes~ number of ORC in the olfactory epithelium/mm3 Olfactory acuity (lowest concentraiton) ~ sensitivity of the ORs

Species	OR genes
Humans	350 (560 pseudogenes)
Mice	1000 - 1300
Other Mammals	4000
Cow	2129
Dog	1100
Macaque	606
Rat	1767
Mice	1391

Breed differences: inconsistent results...high level of OR gene polymorphism behind bad & good sniffer breeds (trainability motivation, etc.)

Kokocińska-Kusiak et al. 2021, Miklósi 2007

"Important odours" for dogs

"Smell of a heating bitch": complex of volatile and nonvolatile molecules (methyl-p-hydroxibenzoate, estradiol, from urine, faces, vagina, anal sac)

"Appeasing pheromone": mixture of fatty acids, glands located in the intermammary sulcus, calming effect \rightarrow firework, veterinary visits

"Smell of blood": oxygenated aldehyde molecule with metallic aroma, different behavioral responses from predators and preys!

Goodwin et al. 1979, Dunbar et al. 1980 Sheppard & Mills 2003, Arshamian et al. 2007,

Applied "benefits"

- 1. Drugs, money, explosives, etc.
- 2. Diseases (COVID, cancer, seizure prediction, etc.)
- 3. SAR, mantrailing (body particules-odour sample and/or body temperature)

Underlying mechanisms

Matching of two stimuli:

Human scent identification: unique smell of the individual from an odour sample

Particular diseases: from exhaled air (concrete molecules are unknown), family dogs can be easily trained with clicker

Melanoma (85%), Breast cancer (88%), Lung cancer (99%), Ovary cancer (100%)

MACHINE (60-70%) < DOGS (90%)

THERMAL RADIATION

Sensing warm body temperature ("snake sense")

Organ: nose tip (rhinarium) \rightarrow cooler in heat, warmer in cold – richly innervated (vagus trigeminus)

Training & behavioral test + non-invasive fMRI

- Dogs are able to distinguish between two identical objects with 10 degrees difference
- The warm stimulus elicited increased neural response in the left somatosensory association cortex

HEARING

Mechanosensation: sound waves -outer ear \rightarrow amplified via the middle ear \rightarrow transduced into nerve impulses (electrical signals) –inner ear \rightarrow auditory nerve \rightarrow temporal lobe

Audible frequency range (audiogram) Human: (infra) 60 Hz-20.000 Hz (ultra) Dog: 67 Hz- 45.000 Hz Distance: humans 90 m, dogs 400 m Localization : humans 1,3°, dogs 8° Discrimination: humans 3 Hz, dogs 8-10 Hz

HEARING

Ear flaps (Pinnae): erect, semi-erect, dropped

Large erect pinnae \rightarrow better localization

Ability to control the orientation of pinnae \rightarrow improve hearing sensitivity (28 dB)

Harrington & Asa 2003, Barber et al 2020

HEARING

Important sounds:

- Conspecific vocalizations (80-8000 Hz): growls (80-800 Hz), barks (120-1600 Hz), howls (200-2000 Hz), whines (300-2300 Hz), whimpers (400-8000 Hz)

Higher pitch \rightarrow more attention (distress, alarm calls, chorus howling)

-Human speech (90-300 Hz): adult-directed (90-120 Hz), infant- and dog-directed (100-250 Hz) \rightarrow preference for female dog-directed prosody in non-primary auditory cortices

Feddersen-Pettersen 2000, Barber et al 2020, Gergely & Gábor et al. 2023

(COLOR)VISION

Ability to perceive differences between light composed of different frequencies

 Number of cone receptor cell types (iopsin): Monochromacy, Dichromacy, Trichromacy, Tetrachromacy, Pentachromacy
 Iopsin sensitivity: human: 380-740 nm (trichromats)
 dogs: 429-555 nm (dichromats)

anglionseitek

Látóideo

Bipoláris seitek Csapok és pálcikák

VISUAL ACUITY

Night vision: 97% are rods (rhodopsin-506-610 nm \rightarrow low light condition adaptation!)

tapetum lucidum (light reflecting layer)– reflects visible light back through the retina!

Accomodation-Focus: humans 7-10 cm, dogs 33-50 cm!!!

Visual acuity: how many cones are connected to one single ganglion cell \rightarrow primates: 1:1; dogs 4:1

Distribution is elongated (,,visual streak") \rightarrow

Sensitivity to horizontal plane (scanning for prey)

Fast saccadic eye-movements unlike humans!

BREED DIFFERENCES

Visual field and skull shape:

Mesocephalic, doliocephalic, brachycephalic

Polgár és mts. 2016, McGreevy és mts. 2004

TACTILE SENSATION

Newborn puppies are blind and deaf! Licking→ defecation stimulus Deprivation from early tactile stimulation has great impact... Conspecific communication: mouthing, pawing, grooming

Human-dog interaction (petting)

-attenuate stress responses in humans

-increase peripheral oxytocin levels in both species

--polymorphisms in the oxytocin receptor gene \rightarrow friendliness, need for petting

- familiarity and preferences \rightarrow huge individual differences

Lindsay 2001, Oláh et al. 2021

TAKE HOME MESSAGES

- 1. Dogs are greater sniffers than humans (3x times better)
- 2. Dogs and humans both can sense the smell of blood, but we behave like preys, dogs behave like predators
- 3. Dogs are able to detect weak thermal radiation (we do not)
- 4. Dogs can hear at higher frequencies and from larger distances BUT we can locate and discriminate sounds better
- 5. Dogs are dichromats, humans are trichromats
- 6. Dogs can see better in dim light but our visual acuity is 4 times better.
- 7. Breed and individual differences are large in dogs!

REFERENCES

- *McGreevy PD és mts. 2004.* . A strong correlation exists between the dis- tribution ofretinal ganglion cells and nose length in the dog. Brain Behav Evolut, 63:13–22
- Gazzano, A. és mts. (2008). Effects of early gentling and early environment on emotional development of puppies. Applied Animal Behaviour Science, 110, 294–304.
- *Miklósi, Á.* 2007. Dog Behaviour, Evolution and Cognition. Oxford University Press
- Polgár, Z. és mts. (2016). A Test of Canine Olfactory Capacity : Comparing Various Dog Breeds and Wolves in a Natural Detection Task. 1–14. https://doi.org/10.1371/journal.pone.0154087
- Lindsay, S.R. (2001) Handbook of Applied dog behaviour and training. Iowa State University Press, Ames IA
- Gergely, A. és mts. (2019). Auditory–Visual Matching of Conspecifics and Non-Conspecifics by Dogs and Human Infants. Animals, 9(1), 17. <u>https://doi.org/10.3390/ani9010017</u>
- Harrington, F. H., & Asa, C. S. (2003). Wolf communication. In D. Mech & L. Boitani (Eds.), Wolves. Behaviour, ecology, and conservation. Chicago, IL: University of Chicago Press
- Bálint, A és mts. (2020). Dogs can sense weak thermal radiation. *Scientific Reportsentific Reports*, 10:3736.
- Gergely, A., Gábor, A., Gácsi, M., Kis, A., Czeibert, K., Topál, J., & Andics, A. (2023). Dog brains are sensitive to infant- and dog-directed prosody. *Communications Biology*, 6, 859. <u>https://doi.org/10.1038/s42003-023-05217-y</u>
- Oláh, K., Topál, J., & Gergely, A. (2021). Communication in Dogs and Wolves. The Cambridge Handbook of Animal Cognition, 74–99. https://doi.org/10.1017/9781108564113.006

REFERENCES

- Horowitz, A. (2014). Domestic dog cognition and behavior: The scientific study of canis familiaris. <u>https://doi.org/10.1007/978-3-642-53994-7</u>
- Furton K. G., & Myers L. J. (2001). The scientific foundations and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3), 487–500
- Goodwin M és mts. (1979) Sex pheromone in the dog. Science 203:559-561,
- Dunbar és mts. 1980. Developmental and activational effects of sex hormones on the attractiveness of dog urine, Physiology & Behavior, 24, 2, 201-204
- Sheppard, G., & Mills, D. S. (2003). Evaluation of dog-appeasing pheromone as a
 potential treatment for dogs fearful of fireworks. *Veterinary Record*, 152(14), 432–436.
 https://doi.org/10.1136/vr.152.14.432
- Arshamian, A. és mts. (2017). A mammalian blood odor component serves as an approach-avoidance cue across phylum border From flies to humans. *Scientific Reports*, 7(1), 1–8. <u>https://doi.org/10.1038/s41598-017-13361-9</u>
- Kokocińska-Kusiak A, Woszczyło M, Zybala M, Maciocha J, Barłowska K, Dzięcioł M. Canine Olfaction: Physiology, Behavior, and Possibilities for Practical Applications. Animals (Basel). 2021 Aug 21;11(8):2463. doi: 10.3390/ani11082463. PMID: 34438920; PMCID: PMC8388720.
- Barber, A. L. A., Wilkinson, A., Montealegre-Z, F., Ratcliffe, V. F., Guo, K., & Mills, D. S. (2020). A comparison of hearing and auditory functioning between dogs and humans. *Comparative Cognition & Behavior Reviews*, 15, 45–80. <u>https://doi.org/10.3819/CCBR.2020.150007</u>

THANK YOU FOR YOUR ATTENTION!

